

## **M COM ENTRANCE**

## **BUSINESS MATHEMATICS PRACTICE QUESTIONS**

## **CH 5: PARTIAL DIFFERENTIATION**

1. If demand functions for two commodities X and Y are given by:

$$x = f(p, q)$$
 and  $y = f(p, q)$ 

where p is the price of good X and q is the price of good Y.

The goods X and Y are complementary if:

- A direct partial elasticities are positive
- **B** cross partial elasticities are positive
- C direct partial elasticities are negative
- **D** cross partial elasticities are negative
- 2. Given the production function  $Q(K, L) = K^2 + 2K + 3L^2$ , the MRTS when K = 3 and L = 1.5 is:
  - **A** 1.125
  - **B** 0.888
  - **C** 0.589
  - **D** None of these
- 3. At a certain factory, daily output is  $Q = f(L, K) = 40 L^{3/4} K^{1/2}$ , where L indicates the size of labour force and K denotes the capital investment. This relationship shows:
  - **A** Increasing Returns to a Factor
  - **B** Increasing Returns to Scale
  - C Decreasing Return to a Factor
  - **D** Decreasing Returns to Scale
- 4. For a production function

$$Z = f(x, y)$$

If  $A = f_{xx}(a, b)$ ,  $B = f_{xy}(a, b)$ ,  $C = f_{yy}(a, b)$  and a, b are the critical points. The function has saddle point when:

- $\mathbf{A} \quad AC B^2 > 0$
- $\mathbf{B} \quad AC B^2 < 0$

- $\mathbf{C} \quad AC B^2 = 0$
- **D**  $AC B^2 > 0$  and A < 0
- 5. The degree of the homogeneous function  $z = \frac{x^2 + y^2}{xy}$  is:
  - **A** 3
  - **B** 2
  - **C** 1
  - $\mathbf{D} = 0$
- 6. If  $f(x, y) = 2x^2y + xy^2 y^3$ , then according to Euler's theorem:  $f(\lambda x, \lambda y) = \lambda^n f(x, y)$ . Here n is:
  - **A** 2
  - **B** 3
  - $\mathbf{C} = 0$
  - **D** any positive integer
- 7. The production function for a commodity is:  $Q = 8LK L^2 K^2$ , where L is labour, K is capital and Q is production. If 10 units of capital are used, what is the upper limit for use of labour which a rational producer will never exceed?
  - **A** 20
  - **B** 30
  - **C** 40
  - **D** 50
- 8. The most correct statement explaining the nature of Cobb-Douglas production function  $Z = AL^{\alpha}K^{\beta}$  is that it is a:
  - A Linear homogeneous production function
  - **B** Non-linear homogeneous production function
  - C Homogeneous production function of degree  $\alpha + \beta$
  - **D** Homogeneous production function
- 9. Given the production function  $Q = f(L, K) = 27L^{2/3}K^{1/3}$ . As L is increased, marginal product of labour:
  - A increases

|     | C                                         | remains same                                                                                                 |  |
|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|     | D                                         | is zero                                                                                                      |  |
|     |                                           |                                                                                                              |  |
| 10. | The                                       | The production function $Q = f(L, K) = 27L^{2/3}K^{1/3}$ exhibits                                            |  |
|     | A                                         | increasing returns to scale                                                                                  |  |
|     | В                                         | decreasing returns to scale                                                                                  |  |
|     | C                                         | constant returns to scale                                                                                    |  |
|     | D                                         | Any of these                                                                                                 |  |
|     |                                           |                                                                                                              |  |
| 11. | Giv                                       | Given the production function $Q = f(L, K) = 27L^{2/3}K^{1/3}$ . If each factor is paid a price equal to its |  |
|     | mar                                       | narginal product, the total reward:                                                                          |  |
|     | A                                         | equals total output Q                                                                                        |  |
|     | В                                         | is more than total output Q                                                                                  |  |
|     | C                                         | is less than total output Q                                                                                  |  |
|     | D                                         | has no relation with the output                                                                              |  |
|     |                                           |                                                                                                              |  |
| 12. | The                                       | The degree of homogeneity of the production function $X = (AL^6 + BK^6)^{1/3}$ is:                           |  |
|     | A                                         | 6                                                                                                            |  |
|     | В                                         | 3                                                                                                            |  |
|     | C                                         | 2                                                                                                            |  |
|     | D                                         | 1                                                                                                            |  |
|     |                                           |                                                                                                              |  |
| 13. | Pric                                      | of a commodity $X$ is $p$ while that of another commodity $Y$ is $q$ . Their respective demand               |  |
|     | fund                                      | ctions are:                                                                                                  |  |
|     | $x = 4e^{-p/100q}$ and $y = 8e^{-q/200p}$ |                                                                                                              |  |
|     | The                                       | The two commodities are:                                                                                     |  |
|     | A                                         | luxuries                                                                                                     |  |

decreases

В

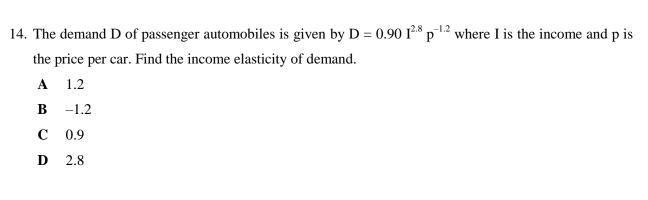
B

 $\mathbf{C}$ 

 $\mathbf{D}$ 

complements

necessities substitutes



- 15. For the production function  $x = f(l, k) = (al^2 + bk^2)^{1/4}$  where x, l and k are the units of output, the reward to factors of production as per their marginal productivity will be:
  - **A** Half of the total output
  - **B** Twice the total output
  - C Same as the total output
  - **D** Has no relation with total output
- 16. Two products are complementary in relationship when:
  - **A**  $e_{11}$  and  $e_{22}$  are negative, and  $e_{12}$  and  $e_{21}$  positive
  - **B**  $e_{11}$  and  $e_{22}$  are negative, and  $e_{12}$  and  $e_{21}$  negative
  - $\mathbf{C}$   $e_{11}$  and  $e_{22}$  are positive, and  $e_{12}$  and  $e_{21}$  positive
  - $\mathbf{D}$   $e_{11}$  and  $e_{12}$  are negative, and  $e_{22}$  and  $e_{21}$  positive
- 17. The production function for a commodity is:  $Q = 10L 0.1 L^2 + 4K 0.2K^2 + 2KL$ , where L is labour, K is capital and Q is production. If 10 units of labour are used, what is the upper limit for use of capital which a rational producer will never exceed?
  - **A** 60
  - **B** 10
  - **C** 80
  - **D** 50
- 18. The demand for coffee is given by Q = 2500 5p + 25q + 0.1Y. The income elasticity of demand for Y(income) = Rs.10,000, p (price of coffee) = Rs.200 and q (price of tea) = Rs.100 is:
  - **A** 0.1
  - **B** 0.2
  - **C** 1.0

- **D** 2.0
- 19. Demand laws for two commodities  $x_1$  and  $x_2$  are given by:

$$x_1 = p_1^{-1.7} p_2^{0.6}$$
 and  $x_2 = p_1^{0.4} p_2^{-0.8}$ 

The cross partial elasticities are:

- **A** 0.8 and 0.7
- **B** 0.6 and 0.4
- $\mathbf{C}$  -0.8 and -0.7
- **D** -1.7 and -0.8
- 20. If  $z = f(x, y) = -x^3 + 27x 4y^2$ , saddle point of the function is:
  - **A** (3, 0)
  - **B** (-3, 0)
  - C (0, 3)
  - **D** (0, -3)
- 21. Demand function of a commodity X is given by:

$$D(x) = 300 - \frac{p_x^2}{2} + \frac{p_y}{50} + \frac{Y}{20}$$

where  $p_x$  is the price of the commodity X,  $p_y$  is the price of a related commodity Y and Y is the income of the consumer. When  $p_x = 10$ ,  $p_y = 15$  and Y = 300, the cross elasticity is:

- **A** 0.05
- **B** 0.5
- **C** 5.0
- **D** 5.5
- 22. A discriminating monopolist faces demand functions  $p_1 = 100 x_1$  and  $p_2 = 84 x_2$  in Market I and Market II respectively. Here  $p_1$  and  $x_1$  are price charged and quantity sold in Market I while  $p_2$  and  $x_2$  are the price charged and quantity sold in Market II respectively. If the monopolist's cost function is  $C = 600 + 4(x_1 + x_2)$ , find how much should be sold in each market to maximize profit.
  - **A**  $x_1 = 44, x_2 = 44$
  - **B**  $x_1 = 40, x_2 = 48$
  - $\mathbf{C}$   $x_1 = 48, x_2 = 40$
  - **D**  $x_1 = 45, x_2 = 43$

- 23. The output function at a factory is  $Q = 40L^{3/4}K^{1/2}$ . If the capital (K) and labour (L) are increased by 4%, the percentage increase in output is:
  - **A** 4.0%
  - **B** 5.0%
  - **C** 6.0%
  - **D** 6.3%
- 24. A manufacturer's production function is  $Q = 20L^{0.7}K^{0.3}$ . The marginal productivity of capital when L=1 and K=1 is:
  - **A** 6
  - **B** 10
  - **C** 12
  - **D** 14
- 25. For the production function X = aL + bK, the sum of L times the marginal product of labour (L) and K times the marginal product of capital (K) is:
  - $\mathbf{A} \quad \mathbf{X}$
  - **B** 2X
  - $\mathbf{C} \quad \mathbf{X}^2$
  - **D** X + a + b