Chapter - 2

Introduction: -

Materials cost form an important Part of the total cost of a Product or Finished Goods. So proper control over Materials is necessary

Materials Cost is directly related with "Storage of Materials" if Materials is kept in larger quantity it block unnecessary capital investment. The function of storage of materials is performed by storekeeper. He is responsible for accepting, identifying and proper placing of Materials. Efficient storage requires the consideration of the following points.

Level of Materials:

In order to avoid unnecessary investment in Materials the management should decide different levels of Materials to be kept in Stores

Maximum Level: -

It is the largest quantity of a particular material, which should be kept in the Store at "any one time". Factors determine Maximum Level of Materials.
$>$ Store space
$>$ Availability of Working Capital
$>$ Seasonal Considerations
> Rate of Consumption of Materials and time necessary in obtaining new Materials
$>$ Rules framed by government
$>$ Economic order Quantity
$>$ Cost of Storage, Insurance, Interest on Capital invested in Stocks etc.

Minimum Level:-

It is the lowest quantities of a particular Materials which must be maintained in store at "all time" so that production may not be stopped on account of non- availabilities of materials. It should be decided by taking into account the following factors.
> Average Rate of Consumption of Materials
$>$ Average time required to obtained delivery of Fresh Supplies.
> Re-order Level

Re- order Level:-

It is that point at which further supplies must be ordered. When Materials reach at a particular level in Stores further supplies of order must be given this level is called Reorder Level.

Danger Level: -

It is that level of Stock maintained in factory where Normal issue of Materials is not allowed. In normal circumstance, only emergency supply of Materials is allowed.

ABC Analysis:-

It is a system of inventory control. It exercises discriminating control over different items of stores classified on the basis of the investment involved. Items are classified into the following categories:

A Category: Quantity less than 10\% but value more than 70\%
B Category: Quantity less than 20\% but value about $\mathbf{2 0 \%}$
C Category: Quantity about 70\% but value less than 10\%

Economic Order Quantity or Re order Quantity :-

It is that size of order which gives most economy in purchasing of materials. It is the most economical order size at which Ordering Cost and Carrying Cost are equal. This is based on the assumption that all of Materials quantity is purchase on same price or in other words, no quantity discount is allowed at any quantity materials purchased
$>$ Ordering Cost: - It is the cost of placing an order or Cost involved in purchasing the Materials. It includes transportation and buying cost
> Carrying Cost /Storing Cost :-It is Cost of Keeping items in store It includes
\checkmark Store Keeping Cost
\checkmark Insurance Premium
\checkmark Cost of Interest on Investments
\checkmark Cost of Obsolescence and Losses

Valuation of Materials Issues:-

Several methods of pricing Materials issues have been evolved which are as follows:
a) First- in First -out method: The Materials received first are to be issued first when Materials requisition is received. Materials left as closing Stock will be at the price of latest purchases.
b) Last-in first- out method: The Materials purchased last are to be issued first when Materials requisition is received. Closing Stock is valued at the oldest Stock price.
c) Simple Average Method:

Materials Issue Price $=\frac{\text { Total of unit price of each purchases that is available for issue }}{\text { Total } \mathrm{No}^{\prime} \text { 's of purchases that is available for issue }}$
d)Weighted Average Price Method: This method gives due weightage to quantities purchased and the purchase price to determine the issue price.

Materials Issue Price $=\frac{\text { Total Cost of Materials received }}{\text { Total Quantity purchased }}$

Various Materials Losses:-

a) Wastage: Portion of basic raw Materials lost in processing having no recoverable value
b) Scrap: The incidental Materials residue coming out of certain manufacturing operations having low recoverable value.
c) Spoilage: Goods damaged beyond rectification to be sold without further processing.
d) Defectives: Goods which can be rectified and turned out as good units by the application of additional labour of other services.

Basic Formulas

Re-order Level or Re-order Point or When the order should be placed =
Maximum Re-order Period \times Maximum usage or consumption
Or
Minimum Level + (Average period of delivery or Re-order Period \times Average Rate of Consumption)

If Safety stock is given then

Re order Level = Safety Stock Level + Lead Time consumption
Lead Time Consumption $=\frac{\text { Annual Consumption }}{\text { No.of Days in a year }} \times$ Lead Time

- Lead Time means Normal Re-order Period or Average Re-order Period

Safety Stock or Ideal inventory level =

Safety Stock $=\frac{\text { Annual Demand }}{365} \times($ Maximum Lead time - Normal Lead Time $)$
Certain times Safety Stock level is given as "Particular Days of Consumption" then safety Stock is calculated by using following formula:-

Safety Stock $=$ Per day Consumption \times No. of days

Maximum Level $=$

Re-order level + Re-order Quantity - (Minimum uses or Consumption x Minimum Re-order Period or Minimum Lead-time)

If Safety stock is given then

Maximum Level = Safety Stock + E.O.Q.

Minimum Level =

Reorder Level - (Average Rate of Consumption or Normal Consumption \times Average time required to obtain fresh Delivery or Average Re-order Period or Normal Re-order Period or Normal Lead period)

Danger Level =

Average Uses or Consumption \times Lead time or Re-order period for Emergency Purchase (Emergency Delivery Time)

Average Stock Level =

$\frac{\text { Maximum Level + Minimum Level }}{2}$
or
Minimum Stock Level $+\frac{1}{2}$ (Re-order Quantity)

Economic Order Quantity or Re-order Quantity =

Economic Order Quantity (E.O.Q) $=\sqrt{\frac{2 \times U \times P}{S}}$
Where $U=$ Quantity (in units or in kg) consumed (used) or Purchased during the Year (If Annual consumption is not given then annual consumption must be find out)

P = Cost of Placing an order or Procurement Cost or Transportation Cost or Buying cost per order

S = Annual Storing Cost or Carrying Cost "per unit" "per annuam"
$=$ Purchase price of Commodity per unit x Average cost of Carrying inventory per annuam

(In normal Case Economic Order quantity is deemed as Re-order Quantity.)

Total Inventory Cost = Cost of Purchase + Inventory Carrying Cost + Ordering Cost

Inventory Carrying Cost $=\frac{1}{2} \times$ Order Size or quantity \times Carrying Cost p.u. p.a.
(Carrying cost is normally given as a percentage of cost per unit)
Ordering Cost $=$ No. of Orders \times Cost per order
No. of Orders $=\frac{\text { Annual Demand }}{\text { Order Size or E.O.Q. }}$
Inventory Cost $=$ Carrying Cost + Ordering Cost

> Inventory Carrying and Ordering Cost $=$ $$
\sqrt{2 \times \text { Annual Consumption } \times \text { Ordering Cost } \times \text { Carrying Cost p.u.p.a }}
$$

Inventory Turnover Ratio or Stock Turnover Ratio =

Inventory Turnover Ratio $=\frac{\text { Raw Materials Consumed }}{\text { Average Inventory }}$
Materials Consumed $=$ Opening Stock + Purchase - Closing Stock

* Materials Which turnover is high will be fast moving Materials

Note: - Inventory Turnover Ratio is the indicator of Rate of Consumption or Fast Moving, Slow Moving and Non-Moving items in the stores

Inventory Turnover Period or No. of Days for which Inventory is Held or Stock Velocity Ratio

$=\frac{365 \text { days or } 12-\text { month }}{\text { Inventory Turnover Ratio }}$

Interval between two Consecutive optimum runs or Frequency of Placing an order:-

$$
\left(\frac{365 \text { days or } 12 \text { month }}{\frac{\text { Annual Demand for Consumption }}{\text { Optimum Run Size }}}\right)
$$

Lead Time Demand

Lead Time Demand $=$ Usages or Demand per Day \times Lead Time

Best Order Quantity:-

To decide whether discount on purchase of material should be availed or not, compare total inventory cost before discount and after discount.

Total inventory cost will include ordering cost, carrying cost and purchase cost.

Table Showing Best Order Quantity

1	2	3	4	5	$\mathbf{5}$	$\mathbf{6}$
No. of orders	Order Quantity	Purchase Price per Unit	Cost of Purchase	Inventory Carrying Cost	Ordering Cost	Total Cost
		(given)	$3=1 \times 2$	$1 / 2 \times$ Order Size \times Carrying Cost per unit per annuam	No. of orders \times Cost per order	$6=4+5+$ 6

Total cost of which order quantity is "Least" that order Quantity is deemed as Best order quantity.

Under MODVAT credit system Quantity Discount, Trade Discount and Excise Duty are not considered in Purchase Price per Unit

Following Five methods is called Historical Cost Method:-

1. FIFO Method:-First in First out Method

In this method closing Stock, consist of the latest consignment. In this method Materials are "first out" which are "in first" it means "old Materials are issued first" and as per sequence of entry Materials are issued

Stores Ledger (as per FIFO method)

Date	Particulars	Receipt			Issued			Balance		
		Qt.	Rate	Amount	Qt.	Rate	Amount	Qt.	Rate	Amount
1/1/07	Opening Stock							5000	10	50,000
3/1/07	Purchase	1000	12	12,000				$\begin{aligned} & \mathbf{5 , 0 0 0} \\ & \hline 1,000 \end{aligned}$	$\begin{aligned} & 10 \\ & \hline 12 \end{aligned}$	$\begin{aligned} & 50,000 \\ & \hline 12,000 \end{aligned}$
5/1/07	Issued 4,000				4,000 Old Materials are issued first	10	40,000	$\begin{aligned} & 1,000 \\ & \mathbf{1 , 0 0 0} \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 12,000 \end{aligned}$
8/1/07	Issued 500				500	10	5,000	$\begin{gathered} \hline 500 \\ 1,000 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{gathered} \hline 5,000 \\ 12,000 \end{gathered}$
9/1/07	Purchase	2000	11	22,000				$\begin{gathered} \hline \mathbf{5 0 0} \\ \mathbf{1 , 0 0 0} \\ \mathbf{2 , 0 0 0} \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{5 , 0 0 0} \\ 12,000 \\ 22,000 \\ \hline \end{gathered}$
15/1	Issued 1,000				$\begin{aligned} & 500 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 , 0 0 0} \\ & \mathbf{6 , 0 0 0} \end{aligned}$	$\begin{gathered} \mathbf{5 0 0} \\ 2,000 \end{gathered}$	$\begin{aligned} & \hline 12 \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6,000 \\ 22,000 \\ \hline \end{gathered}$
15/1	Shortage				50	12	600	$\begin{gathered} 450 \\ 2,000 \end{gathered}$	$\begin{aligned} & 12 \\ & 11 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,400 \\ 22,000 \\ \hline \end{array}$
18/1	Purchase	1000	15	15,000				$\begin{gathered} \hline 450 \\ 2,000 \\ 1,000 \\ \hline \end{gathered}$	$\begin{aligned} & 12 \\ & 11 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5,400 \\ 22,000 \\ 15,000 \\ \hline \end{gathered}$
30/1	Issue 2,000				$\begin{aligned} & 4,50 \\ & 1,550 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{array}{r} 5,400 \\ \mathbf{1 7 , 0 5 0} \\ \hline \end{array}$	$\begin{gathered} 450 \\ 1,000 \end{gathered}$	$\begin{aligned} & \hline 11 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4,950 \\ 12,000 \\ \hline \end{gathered}$

Value of Closing Stock is $\mathbf{1 , 4 5 0}$ units for Rs.16,950

Note: - Treatment for shortage of materials is the same as that for issue of Materials \& treatment for return of material is the same as that for receipt of materials.

2. LIFO Method:- Last in First out Method

In this method, Materials are "first out" which are "Last in" it means "New Materials are issued first" and as per sequence of entry of materials are issued.

Stores Ledger (as per LIFO method)

Date	Particulars	Receipt			Issued			Balance		
		Qt.	Rate	Amount	Qt.	Rate	Amount	Qt.	Rate	Amount
1/1/07	Opening Stock							5000	10	50,000
3/1/07	Purchase	1000	12	12,000				$\begin{array}{r} \mathbf{5 , 0 0 0} \\ \mathbf{1 , 0 0 0} \end{array}$	10	50,000 12,000
5/1/07	Issued 4,000					12 10	$\begin{aligned} & 12,000 \\ & 30,000 \end{aligned}$	2,000	10	20,000
8/1/07	Issued 500				500	10	5,000	1,500	10	15,000
9/1/07	Purchase	2000	11	22,000				$\begin{array}{r} 1,500 \\ \mathbf{2 , 0 0 0} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{1 0} \\ & \mathbf{1 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 15,000 \\ & 22,000 \\ & \hline \end{aligned}$
15/1	Issued 1,000				1,000	11	11,000	$\begin{aligned} & 1,500 \\ & 1,000 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 15,000 \\ & 11,000 \\ & \hline \end{aligned}$
15/1	Shortage				50	11	550	$\begin{gathered} 1,500 \\ \mathbf{9 5 0} \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 15,000 \\ & 10,450 \\ & \hline \end{aligned}$
18/1	Purchase	1000	15	15,000				$\begin{gathered} 1,500 \\ 950 \\ 1,000 \end{gathered}$	$\begin{aligned} & 10 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 15,000 \\ & 10,450 \\ & 15,000 \\ & \hline \end{aligned}$
30/1	Issue 2,000				$\begin{gathered} 1,000 \\ 950 \\ 50 \\ \hline \end{gathered}$	15 11 10	$\begin{gathered} 15,000 \\ 10,450 \\ 500 \end{gathered}$	1,450	10	14,500

Value of Closing Stock is $\mathbf{1 , 4 5 0}$ units for Rs. $\mathbf{1 4 , 5 0 0}$
Note: - Treatment for shortage of materials is the same as that for issue of Materials \& treatment for return of material is the same as that for receipt of materials.

LIFO has following advantages:-

(a) The cost of the materials issued will be reflecting the current market price.
(b) The use of the method during the period of rising prices does not reflect undue high profit in the income statement.
(c) In the case of falling price, profit tend to rise due to lower materials cost, yet the finished goods appear to be more competitive and are at market price.
(d) During the period of inflation, LIFO will tend to show the correct profit.

3. Average Price Method or Simple Average Price Method:

In this method, the price is calculated by dividing total of unit purchase prices of different lots in Stock by the number of prices used in the calculation. Unit prices of latest consignment are taken into account for this purpose. Every time when an issue is made, a new average is worked out. Normally it is presumed that materials received first will be issued first and, therefore, the rate of the Materials not in Stock is ignored while calculating average rate.

Stores Ledger (As per Simple Average Price method)

Date	Particulars	Receipt			Issued			Balance	
		Qt.	Rate	Amount	Qt.	Rate	Amount	Qt.	Amount
$\mathbf{1}^{\text {st July }}$								500	10,000
	4 July	Purchase	400	21	8,400				900
6 July	Issued 600				600	20.50	12,300	300	6,100
8 July	Purchase	800	24	19,200	-	-	-	1,100	25,300
9 July	Issue 500	-	-	-	500	22.50	$\mathbf{1 1 , 2 5 0}$	600	14,050
13 July	Issue 300	-	-	-	$\mathbf{3 0 0}$	24,00	7,200	300	6,850
24 July	Purchase 500	500	25	12,500	-	-	-	800	19,350
28 July	Issue 400	-	-	-	400	24.50	$\mathbf{9 , 8 0 0}$	400	9,550

Note: - Treatment for shortage of materials is the same as that for issue of Materials \& treatment for return of material is the same as that for receipt of materials.

Working Note:-
Various issue prices are computed as follows:-
On $6^{\text {th }}$ July $=(20+21) / 2=$ Rs. 20.50
On $9^{\text {th }}$ July $=(21+24) / 2=$ Rs. 20.50
On $13^{\text {th }}$ July $=(24+1) / 2=$ Rs. 20.50
On $28^{\text {th }}$ July $=(24+25) / 2=$ Rs. 20.50
Value of Closing Stock is 400 units for Rs.9,550
In this method Average Rate of those goods are taken which are available in stock
4. Weighted Average Price Method:-

Under weighted Average Price Method, cost of goods available for sale during the period is aggregated and then divided by number of units available for sale during the period to calculate weighted average price per unit. Thus

Weighted Average Price per unit $=\frac{\text { Total cost of goods available for sale during the period }}{\text { Total number of units available for sale during the period }}$

Closing Stock $=$ No. of units in Stock \times weighted Average price per unit

Cost of Goods sold $=$ No. of units sold \times weighted average price per unit

Techniques of Inventory Control:

1. Setting the various Stock Level

- Minimum Level
- Maximum Level
- Re-order Level
- Danger Level

Assignments (50)

Type 1:- Level of Materials
5 Durestions
Type 2:- E.O.Q. \& Level of Materials
20 Puestions
Type 3:- E.O.Q at Quantity Discount 5 Duestions
Type 4:- LIFO \& FIFO IO Dacstions
Type 5:- Mics. Questions IOMaestions

Type 1:- Level of Materials

5

Q. 1

The following information is available in respect of materials number 30:

Re-order quantity	$\mathbf{1 , 5 0 0}$ units
Re-order period	4 to 6 weeks
Maximum consumption	400 units per week
Normal consumption	300 units per week
Minimum consumption	250 units per week

Calculate:
(1) Re-order Level
(2) Minimum Level
(3) Maximum Level and
(4) Average Stock Level

B.Com (P) 2012 (External) [9 Marks]

(i) Re-order Level = Maximum Consumption \times Maximum Re-order period

$$
=400 \times 6=2,400 \text { units }
$$

(ii) Minimum Level = Re-Order Level - (Average Consumption \times Average Re-order period)

$$
=2,400-(300 \times 5)=2,400-1,500=900 \text { units }
$$

(iii) Maximum Level = Re-Order level + Re-order quantity - (Minimum Consumption \times Minimum Re order period)

$$
=2,400+1,500-(250 \times 4)=3,900-1,000=2,900 \text { units }
$$

(iv) Average Stock Level $=\frac{\text { Minimum Stock Level }+ \text { Maximum Stock Level }}{2}$

$$
\begin{gathered}
=\frac{900+2,900}{2}=1,900 \text { Units } \\
\text { Or }_{\mathbf{r}}
\end{gathered}
$$

Average Stock Level $=$ Minimum Stock Level $+\frac{1}{2} \times($ Re-order Quantity $)$

$$
=900+\frac{1}{2} \times(1,500)=900+750=1,650 \text { Units }
$$

Q. 2

The following information is available in respect of Materials:
Re-order Quantity
Re-order period (lead time)
Consumption (usage)
\quad Maximum - 500 Units per week
\quad Normal - 400 Units per week
\quad Minimum - 300 Units per week

Calculate (i) Re-order Level (ii) Minimum Stock Level (iii) Maximum Stock Level.

B.Com (P) 2007 (Regular) [3 Marks]

a) Re-order Level $=$ Maximum Consumption \times Maximum Re-order Period.

$$
=500 \times 8=4,000 \text { Units }
$$

b) Minimum Level = Re-order Level - (Average Consumption \times Average Re-order period)

$$
=4,000-(400 \times 6)=4,000-2,400=1,600 \text { units }
$$

c) Maximum Stock Level = Re-order Level + Re-order Quantity - (Minimum consumption \times Minimum Re-order period)

$$
\begin{aligned}
& =4,000+2,000-(300 \times 4) \\
& =6,000-1,200=4,800 \text { units }
\end{aligned}
$$

Q. 3

Two Components A and B are used as follows

Normal usage	50 units per week each
Minimum usage	25 units per week each
Maximum usage	75 units per week each
Re-order quantity	A $: 300$ Units
	B :500 units
Re-order period	A: 4 to 6 weeks
	B $: 2$ to 4 weeks

Calculate for each Component:
(a) Re-order Level
(b) Minimum Level
(c) Maximum Level
(d) Average Stock Level
a) Re-order Level $=$ Maximum Consumption \mathbf{x} Maximum Re-order Period

$$
\begin{aligned}
A & =6 \times 75 \quad 450 \text { units } \\
B & =4 \times 75=300 \text { units }
\end{aligned}
$$

b) Minimum Level $=$ Re-order Level - (Average Consumption \times Average Re-order period)

$$
\begin{aligned}
& A=450-(50 \times 5)=200 \text { units } \\
& B=300-(50 \times 3)=150 \text { units }
\end{aligned}
$$

c) Maximum Stock Level = Re-order Level + Re-order quantity - (Minimum consumption \mathbf{x} Minimum

$$
\begin{array}{ll}
A=450+300-(25 \times 4) & =650 \text { units } \\
B=300+500-(25 \times 2) & =750 \text { units }
\end{array}
$$

d) Average Stock Level $=$ Minimum Stock Level $+\frac{1}{2} \times$ Re-order quantity

$$
\begin{aligned}
& A=200+\left(\frac{1}{2} \times 300\right)=350 \text { units } \\
& B=150+\left(\frac{1}{2} \times 500\right)=400 \text { Units }
\end{aligned}
$$

Or
Average Stock Level $=\frac{\text { Maximum Stock Level }+ \text { Minimum Stock Level }}{2}$

$$
\begin{aligned}
& A=\frac{650+200}{2}=425 \text { Units } \\
& B=\frac{750+150}{2}=450 \text { Units }
\end{aligned}
$$

Q. 4

In manufacturing its products Z, a company uses two types of Raw Materials A and B respect of which the following information is supplied:

One unit Z requires 10 Kg . of A and 4 Kg of B Materials. Price per kg. of A Materials is Rs. 10 and that of B is Rs. 20. Re-order quantity of A and B Materials are $10,000 \mathrm{~kg}$. and $5,000 \mathrm{~kg}$. Re-order level of A and B Materials are $8,000 \mathrm{~kg}$. and 4,750 kg. respectively. Weekly production varies from 175 units to 225 units average 200 units. Delivery period of A Materials is $\mathbf{1}$ to 3 weeks and B Materials is $\mathbf{3}$ to 5 weeks.

Compute:
(i) Minimum Stock Level of A
(ii) Maximum Stock Level of B

Minimum Stock Level of A

$=$ Re-order Level - (Average Consumption \times Average Delivery Period)
$=8,000-(200 \times 10 \times 2)=4,000 \mathrm{~kg}$.
Maximum Stock Level of B
$=$ Re-Order Quantity + Re- Order Level - (Minimum Consumption \times Minimum Delivery Period)
$=5,000+4,750-(175 \times 4 \times 3)=7,650 \mathrm{~kg}$.

Q. 5

In manufacturing its products, a company uses three raw materials A, B and C in respect of which the following apply:

Raw Materials	Usage per unit of product (Kg)	Re-order quantity (Kg)	Price per Kg (Rs.)	Delivery period (weeks)	Order Level (Kg)	Minimum Level (Kg)
A	10	10,000	0.10	1 to 3	$8,000 \mathrm{~kg}$	-
B	4	5,000	0.30	3 to 5	$4,750 \mathrm{~kg}$	-
C	6	10,000	0.15	2 to 4	-	2,000

Weekly production varies from 175 to 225 units, averaging 200. What would you except the quantities of the following to be:
(i) Minimum Stock Level of A;
(ii) Maximum Stock Level of B;
(iii) Reorder Level of C; and
(iv) Average Stock Level of A

Type 2:- E.O. Q. Ef Level of Materials 25

Q. 6

From the following particulars, find Economic Order Quantity (EOQ)
Annual Demand $=\quad 3,200$ Units
Unit Cost = Rs. 6
Cost of Carrying Inventory = 25\% p.a.
Cost of one procurement = Rs. 150
$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
U = Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$=\sqrt{\frac{2 \times 3,200 \times 150}{1.5}}=800$ Units

Q. 7

A Factory requires 1,500 units of an item per month, each costing Rs. 27. The cost per order is Rs. 150 and the inventory carrying charges work out to 20% of the average inventory. Find out the economic order quantity and the number of orders per year.

B.Com (P) 2009 (Supply.)

$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
U = Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$E O Q=\sqrt{\frac{2 \times 18,000 \times 150}{5.4}}=1,000$ units.
Number of orders per year $=\frac{\text { Annual Consumption }}{\text { EOQ }}=\frac{18,000}{1,000}=18$

Q. 8

From the following, calculate Economic Order Quantity and the number of order to be placed per quarter.

Quarterly Consumption 2000 kg.
Cost of placing one order Rs. 50
Cost per unit
Storage cost
Rs. 4

80\% on average inventory.
B.Com (H) 1997 / B.Com (P) 2009 (External) [7 Marks]
$\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathbf{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$\mathrm{EOQ}=\sqrt{\frac{2 \times 8,000 \times 50}{3.2}}=500 \mathrm{~kg}$.
No. of order per quarter $=\frac{\text { Quarterly Consumption }}{\text { E.O.Q. }}=\frac{2,000}{500}=4$ Orders.

Q. 9

From the following information relating to a type of Raw Materials, Calculate EOQ:

Monthly demand	200 unit
Unit price	Rs. 5
Order cost per order	Rs. 12
Storage cost	2% p.a.
Interest rate	10% p.a.

B.Com (P) 2007 (Regular) [4 Marks]

$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=$ Annual Usage $=200 \times 12=2,400$ units
$\mathbf{P}=$ Cost of placing an order $=$ Rs. 12
S = Cost of storing one unit for a year = ($10 \%+2 \%)$ of Rs. $5=$ Rs. 0.60
$E O Q=\sqrt{\frac{2 \times 2,400 \times 12}{0.60}}=309.83$ unit (Approx)
Q. 10

From the following information, calculate economic order quantity and the number of orders to be placed in one quarter of the year for product of X :

Quarterly consumption of Materials	$\mathbf{2 , 0 0 0} \mathbf{~ k g}$
Cost of placing one order	Rs. 50
Cost per unit	Rs. $\mathbf{4 0}$
Storage and carrying cost	$\mathbf{8 0 \%}$ on average inventory

B.Com (P) 2012 (Regular) [7 Marks]
E.O.Q. $=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=$ Annual Consumption $=2,000 \times 4=8,000 \mathrm{~kg}$
$\mathbf{P}=$ Buying Cost per order $=$ Rs. 50
S = Storage and Carrying Cost $=\mathbf{8 0 \%}$ on average inventory
E.O.Q. $=\sqrt{\frac{2 \times 8,000 \times 50}{32}}=158.11 \mathrm{~kg}$ (App)

Number of orders per quarter $=\frac{\text { Quarterly consumption }}{\text { E.0.Q. }}=\frac{2,000}{158.11}=12.65$ (app.)

Q. 11

A company manufactures 5,000 units of a product per month. Cost of placing an order is Rs. 100. The purchase price of raw materials is Rs. 10 per kg. The re-order period is 4 to 8 weeks. The consumption of raw Materials varies from 100 kg . to 450 kg per week. The average consumption being 275 kg , the carrying cost of inventory is $\mathbf{2 0 \%}$ per annum. You are required to calculate:
(i) Reorder Quantity
(ii) Reorder Level

B.Com (P) 2005 (External) [5 Marks]

(i) Re-Order Level $=$ Maximum Consumption \times Maximum Re-order Period.

$$
=450 \mathrm{~kg} \times 8 \text { weeks }=3,600 \mathrm{~kg}
$$

(ii) $\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathbf{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
$S=$ Cost of storing one unit for a year

$$
=\sqrt{\frac{2 \times 14,300 \times 100}{2}}=1,196 \mathrm{~kg} \text { (approx) }
$$

Q. 12

A Company uses 2,500 units of a material per month. Cost of placing an order is Rs. 150 . The cost per unit is Rs. 20. The re-order period is 4 to 8 weeks. The minimum consumptions of raw materials are 100 units whereas the average consumption are 275 unit. The carrying cost of inventory is 20% per annum.

Calculate:

1. Re-order quantity and
2. Re-order Level
B.Com (P) 2009 (Regular) [6 Marks]
$\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
$S=$ Cost of storing one unit for a year
$\mathrm{EOQ}=\sqrt{\frac{2 \times 30,000 \times 150}{4}}=1,500$ units
Re-order Level = Maximum Re-order Period \times Maximum usage

$$
=8 \times 450=3,600 \text { units }
$$

Average Consumption $=\frac{\text { Minimum Consumption }+ \text { Maximum Consumption }}{2}$
275 units $=\frac{100+\text { Maximum Consumption }}{2}$
Maximum consumption or Maximum usage $=450$ units

Q. 13

Medical Aids Co. manufactures a special product A. The following particulars were collected for the year 2014.

Cost of placing an order	Rs. 100
Annual carrying cost per unit	Rs. 15
Normal usage	50 unit per week
Minimum usage	25 units per week
Maximum usage	75 unit per week
Re-order period	4 to 6 week

Compute from the above (i) Re-order quantity (ii) Re-order Level (iii) Minimum Level (iv) Maximum Level (v) Average Stock Level (weeks in a year 52).

> B.Com (P) 2011(Regular) [7 Marks]
$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
$S=$ Cost of storing one unit for a year

$$
=\sqrt{\frac{2 \times 2,600 \times 100}{15}}=186 \text { units }
$$

Annual Demand for input units
$=52$ weeks \times Normal usage of input unit per week
$=52 \times 50=2,600$ units.
(i) Re-order Level $=$ Maximum Consumption \times Maximum Re-order Period.

$$
=6 \text { weeks } \times 75 \text { units }=450 \text { units. }
$$

(ii) Minimum Stock Level = Re-order Level - (Average Consumption \times Average Re-order period)

$$
\begin{aligned}
& =450 \text { units }-(50 \text { units } \times 5 \text { weeks }) \\
& =450 \text { units }-250 \text { units }=200 \text { units. }
\end{aligned}
$$

(iii) Maximum Stock Level = Re-order level + Re-order Quantity - (Minimum consumption \times Minimum Re-order Period)

$$
=450-(25 \times 4)+186=450-100+186=536 \text { units }
$$

(iv) Average Stock Level $=\frac{\text { Minimum Stock Level }+ \text { Maximum Stock Level }}{2}$

$$
=\frac{200+536}{2}=368 \text { units }
$$

Q. 14

Calculate:
(i) Maximum Stock Level;
(ii) Re-order Level
(iii) Minimum Stock Level

Form the information of Materials \mathbf{A} as given below:
Re-order quantity 3,600 unit
Re-order period:
Minimum 3 weeks
Maximum 5 week
Maximum consumption 900 units per week
Minimum consumption 300 units per week

B.Com (P) 2013(External) [9 Marks]

(i) Re-Order Level $=$ Maximum Consumption \times Maximum Re-order Period.

$$
=900 \times 5=4,500 \text { units }
$$

(ii) Minimum Stock Level $=$ Re-order Level $-($ Average Consumption \times Average Re-order period)

$$
\begin{aligned}
& =4,500-(600 \times 4) \\
& =4,500-2,400=2,100 \text { units }
\end{aligned}
$$

(iii) Maximum Stock Level = Re-order Level + Re-order Quantity - (Minimum Consumption \times Minimum Re-order Period
$=(4,500+3,600)-(300 \times 3)$

$$
=\mathbf{8 , 1 0 0}-\mathbf{9 0 0}=7,200 \text { units }
$$

Q. 15

From the following information, calculate:
(i) Economic Order Quantity
(ii) Total annual carrying and ordering cost at that quantity.
(iii) Re-order Level
(iv) Minimum Level
(v) Maximum Level
(vi) Average Stock Level
(vii)Danger level

Rate of Usage: 5 Kg. per unit of finished products. Weekly production of finished product varies from 50 units to 150 units.
Purchase price of input unit: Rs. 20
Annual carrying cost: 6.5\%
Ordering cost per order: Rs. 100.
Lead-time: 3 weeks to 7 weeks, For emergency purchase 2 weeks.
B.Com (P) 2008(External) [10 Marks]
$\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=52$ weeks $\times 100$ units $\times 5 \mathrm{~kg}=\mathbf{2 , 6 0 0 0}$ unit
P = Rs. 100
S = 6.5\% of Rs. $20=$ Rs. 1.30
E.O.Q. $=\sqrt{\frac{2 \times 26,000 \times 100}{1.30}}=2,000$ units
(ii) Annual Carrying Cost $=\frac{1}{2} \times$ E.O.Q. \times Carrying Cost per unit per annum

$$
=\frac{1}{2} \times 2,000 \times 1.3=\text { Rs. } 1,300
$$

Annual Ordering Cost $=\frac{\text { Annual Consumption }}{\text { E.o.Q. }} \times$ Ordering Cost

$$
=(26,000 / 2,000) \times 100=\text { Rs. } 1,300
$$

Total annual carrying cost and annual ordering cost $=$ Rs. 1,300 + Rs. 1,300 $=$ Rs. 2,600
(iii) Re-order Level $=$ Maximum Usage \times Maximum Lead period

$$
=(150 \times 5) \times 7=5,250 \text { units }
$$

(iv) Minimum Level $=$ Re-order $-($ Average usage \times Average lead period)

$$
=5,250-[(100 \times 5) \times 5]=2,750 \text { Units }
$$

(v) Maximum Level $=$ Re-order Level + Re-order Quantity - (Minimum usage - Minimum Lead Time)

$$
=5,250+2,000-(50 \times 5 \times 3)=6,500 \text { units }
$$

(vi) Average Level $=\frac{\text { Minimum Stock Level }+ \text { Maximum Stock Level }}{2}=\frac{2,750+6,500}{2}=4,625$ units
(vii)Danger Level $=$ Average usage \times Lead Time for Emergency Purchases

$$
=(100 \times 5) \times 2=1,000 \text { units }
$$

Q. 16

The following data pertaining to materials \mathbf{X} :

Supply period
Consumption rate
Maximum 600 unit per month
Minimum 100 unit per month
Normal
Yearly
Stores costs are 50\% to Stock value.
Ordering costs are Rs. 400 per order
Price per unit of Materials Rs. 64

Compute:

(i) Re-order Level
(ii) Minimum Stock Level
(iii) Maximum Stock Level
(iv) Average Stock Level

4 to 8 month

 300 unit per month 3600 unitB.Com (P) 2004 (Regular) [8 Marks] / 2004 (External) [7 Marks]
(i) Re-order Level $=$ Maximum Consumption \times Maximum Supply Period $=600 \times 8=4,800$ units
(ii) Minimum Stock Level = Re-order Level - (Normal Consumption \times Normal Supply Period)

$$
=4,800-(300 \times 6)=4,800-1,800=3000 \text { units. }
$$

(iii) Maximum Stock Level
$=$ Re-order Level + Re-order Quantity $-($ Minimum Consumption \times Minimum Supply Period)
$=4,800+300-(100 \times 4)=4,700$ units.
(iv) Average Stock Level $=\frac{\text { Minimum Stock Level }+ \text { Maximum Stock Level }}{2}=\frac{4,700+3,000}{2}=3,850$ units

Working Note:

$\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathrm{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$E O Q=\sqrt{\frac{2 \times 3,600 \times 400}{32}}=300$ units
Q. 17
A.S. Ltd. produces a product 'RED' using two components X and Y. Each unit of 'RED' Requires 0.4 kg of X and 0.6 kg of Y. Weekly production varies from 350 units to 450 units averaging 400 units. Delivery period for both the components is $\mathbf{1}$ to 3 weeks. The economic order quantity for \mathbf{X} is $\mathbf{6 0 0}$ kgs and for \mathbf{Y} is 1,000 kgs. Calculate.
(i) Re-order Level of \mathbf{X};
(ii) Maximum Level of \mathbf{X};
(iii) Minimum Level of \mathbf{Y}
B.Com (H) 2008 [5Marks]
(i) Re-order Level of $\mathbf{X}=$ Maximum Consumption \times Maximum Recorder period

$$
=(450 \times 0.4) \times 3=540 \mathrm{~kg} .
$$

(ii) Maximum Level of $\mathrm{X}=$ Re-order Level + Re-order Quantity - (Minimum Consumption \times Minimum Reorder Period)

$$
=540+600-(350 \times 0.4 \times 1)=1,000 \mathrm{~kg} .
$$

(iii) Minimum Level of $\mathbf{Y}=$ Re-order Level $-($ Normal Consumption \times Normal Reorder Period)

$$
\begin{aligned}
& =(450 \times 0.6 \times 3)-(400 \times 0.6 \times 2) \\
& =810-480=330 \mathrm{Kg} .
\end{aligned}
$$

Q. 18

Z Ltd. provides the following information in respect of Materials $\mathbf{- R}$.

Supply period 5 to 15 days. Rate of Consumption

Average
Maximum
Yearly
Ordering costs are Rs. 20 per order. Purchase Price per unit is Rs. 50
Storage costs are 10% of unit value

Compute:

(i) Re-order Level
(ii) Minimum Level
(iii) Maximum Level

B.Com (H) 1998 / B.Com (P) 2008 (External) [8 Marks]

(i) Re-Order Level $=$ Maximum Consumption \times Maximum Re-order Period $=20 \times 15=300$ Units.
(ii) Minimum Level = Re-order Level - (Average Consumption \times Average Re-order period)

$$
=300-(15 \times 10)=150 \text { Units }
$$

(iii) Maximum Level = Re-order Level + Re-order Quantity - (Minimum Consumption \times Minimum Re-order period)
$=300+200-(10 \times 5)=450$ Units.

Working Note:-

$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathbf{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$=\sqrt{\frac{2 \times 5,000 \times 20}{5}}=200$ units

Q. 19

From the following information, calculate Re-order quantity:

Maximum re-order period	8 week
Average Stock	400 unit
Average usage	50 unit per week
Maximum usage	$\mathbf{8 0}$ unit per week
Average re-order period	$\mathbf{6}$ week

B.Com (P) 2010 (External) [7 Marks]

Re-order Level $=$ Maximum Consumption \times Maximum Re-order Period.

$$
=80 \times 8=640 \text { units }
$$

Minimum Stock Level $=$ Re-order Level $-($ Average Consumption \times Average Re-order period)

$$
=640-(50 \times 6)=640-300=340 \text { units }
$$

Maximum Stock Level $=$ Re-order Level + Re-order Quantity $-($ Minimum Consumption \times Minimum Reorder period)
$\Rightarrow \quad 460=640-(20 \times 4)+$ Re - order quantity
$\Rightarrow 460=640-80+$ Re-order quantity
$=460-560+$ Re-order quantity
Re-order quantity $=460-560=-100$ Units (It is wrong because Re-order quantity never in negative)

Working Note:-

Average Stock $=($ Minimum Stock Level + Maximum Stock Level $) / 2$
$\Rightarrow \quad 400=(340+$ Maximum Stock Level $) / 2$
$\Rightarrow 800=340+$ Maximum Stock Level
Maximum Stock Level $=800-340=460$ units

Alternative Solution:-

Re-order Level $=$ Maximum Consumption \times Maximum Re-order Period

$$
=80 \times 8=640 \text { units }
$$

Minimum Stock Level $=$ Re-order Level - (Average Consumption \times Average Re-order Period)

$$
=640-(50 \times 6)=640-300=340 \text { units }
$$

Average Stock Level $=$ Minimum Stock Level $+\frac{1}{2} \times$ Re-order Quantity

$$
\Rightarrow 60=\frac{1}{2} \times \text { Re-order Quantity }
$$

Re-order Quantity $=60 \times 2=120$ units

Q. 20

About 50 items of Materials are required every day in a company. A fixed cost of Rs. 50 per order is incurred for placing an order. The inventory carrying cost per item amounts to Rs. 0.02 per day. The lead period is 32 days.

Compute:

(i) Economic order quantity
(ii) Re-order level.

B.Com (H) 2014 External [10 Marks]

[E.O.Q. = 500 units; Re-order level $=1,600$ units]

Q. 21

A company manufactures 5,000 units of a product per month. The purchase price of raw Materials is Rs. 20 per kg. The re- order period is 4 to 8 weeks. The consumption of raw Materials varies from 200 kg . to 600 kg per week. The cost of placing an order is Rs. 100 . The carrying cost of inventory is 20% per annum. You are required to calculate:
(i) Re - order Quantity;
(ii) Re-order Level (assume 50weeks in a year)

B.Com (P) 2013 (Regular) [7 Marks]

[E.O.Q. = 1,000 Kg; Re-order level = 4,800 Kg]

Q. 22

A company manufactures products having a monthly demand of 2,000 units. For one unit of finished products 2 kgs of a particulars raw materials items is needed. The purchase price of the Materials is Rs. 20 per kg. The ordering cost is Rs. 120 per order and the holding cost is $\mathbf{1 0 \%}$ per annum. Calculate;
(i) Economic order quantity (EOQ) and
(ii) Annual cost of purchasing and storage of the raw materials at that quantity.

B.Com (H) 2004

$\mathbf{E O Q}=\sqrt{\frac{2 \times U \times P}{S}}$
U = Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
$S=$ Cost of storing one unit for a year
$\mathrm{EOQ}=\sqrt{\frac{2 \times 48,000 \times 120}{2}}=2,400 \mathrm{Kg}$
Annual Cost $=$ Cost of purchasing + Cost of storage

$$
=\left(\frac{48,000}{2,400} \times 120\right)+\left(\frac{1}{2} \times 2,400 \times 2\right)=2,400+2,400=\text { Rs. } 4,800
$$

Q. 23

A company manufactures 5,000 units of a product per month. Cost of placing an order is Rs. 100. The purchase price of raw materials is Rs. 10 per kg . The order period is 4 to 8 weeks. The consumption of raw materials varies from 100 kg to 450 kg per week. The average consumption being 275 kg , the carrying cost of inventory is $\mathbf{2 0 \%}$ per annum. You are required to calculate:
(i) Reorder Quantity
(ii) Maximum Level
(iii) Minimum Level and
(iv) Average Level

Q. 24

Type 3:- E.O.Q. at Quantity Discount

Q. 25

A firm is able to obtain quantity discounts on its orders of materials as follows:

Price per tonne	Tonnes	Price	Tonnes
Rs. 6.00	Less than 250	Rs. 5.70	2,000 and less than 4,000
Rs. 5.90	$\mathbf{2 5 0}$ and less then 800	Rs. 5.60	4,000 and over
Rs. 5.80	$\mathbf{8 0 0}$ and less than 2,000		

The annual demand for the materials is $\mathbf{4 , 0 0 0}$ tonnes. Stock holding costs are 20% of materials cost per annum. The delivery cost per order is Rs.6.
You are required to calculate the best quantity to order.

C.A. Inter November 1990 Adapted

Table showing best order quantity

Ordering quantity	Price per tonnes	No. of Order	Cost of purchase (Rs.)	Annual Carrying Cost $\frac{1}{2} \times$ order Quantity \times carrying cost p.u.p.a. (Rs.)	Ordering Cost (Rs.)	Total Cost (Rs.)
200	6	20	$\begin{aligned} & 4,000 \times 6 \\ & =24,000 \end{aligned}$	$\frac{1}{2} \times 200 \times(6 \times 20 \%)=120$	$20 \times 6=120$	24,240.00
250	5.9	16	$\begin{gathered} 4,000 \times 5.9 \\ =23,600 \\ \hline \end{gathered}$	$\begin{gathered} \frac{1}{2} \times 250 \times(5.9 \times 20 \%) \\ =147.50 \end{gathered}$	$16 \times 6=96$	23,843.50
800	5.8	5	$\begin{gathered} 4,000 \times 5.8 \\ =23,200 \end{gathered}$	$\begin{aligned} \frac{1}{2} \times 800 & \times(5.8 \times 20 \%) \\ & =464 \end{aligned}$	$5 \times 6=30$	23,694.00
2,000	5.7	2	$\begin{gathered} 4,000 \times 5.7 \\ =22,800 \\ \hline \end{gathered}$	$\begin{gathered} \frac{1}{2} \times 2,000 \times(5.7 \times 20 \%) \\ =1,140 \end{gathered}$	$2 \times 6=12$	23,952.00
4,000	5.6	1	$\begin{gathered} 4,000 \times 5.6 \\ =22,400 \end{gathered}$	$\begin{gathered} \frac{1}{2} \times 4,000 \times(5.6 \times 20 \%) \\ =2,240 \end{gathered}$	$1 \times 6=6$	24,646.00

The above table shows that least cost is Rs. $\mathbf{2 3 , 6 9 4}$ when the ordering quantity is $\mathbf{8 0 0}$ units. Hence, it is the optimum ordering quantity.

Q. 26

YPS Ltd. has received an offer of quantity discount on its order of materials as under:

Price per tonne
Rs.
1,200
1,180
1,160
1,140
1,120

Tonnes
Nos.
less than 500
500 and less than 1,000
1,000 and less than 2,000
2,000 and less than 3,000
3,000 and above

The annual requirement for the materials is 5,000 tonnes. The ordering cost per order is Rs. 1,200 and the carrying cost is estimated at 20% per annum.

You are required to compute the most economical order quantity presenting the relevant information in a tabular form.
B.Com (H) 2001

Calculation of Economic order quantity (EOQ)

Size if order (Tonnes)	Price per tonne	Purchase of 5,000 tonnes	Ordering cost	Carrying cost	Total cost
400	$\mathbf{1 , 2 0 0}$	$\mathbf{6 0 , 0 0 , 0 0 0}$	$\mathbf{1 5 , 0 0 0}$	$\mathbf{4 8 , 0 0 0}$	$\mathbf{6 0 , 6 3 , 0 0 0}$
500	$\mathbf{1 , 1 8 0}$	$59,00,000$	12,000	59,000	$59,71,000$
$\mathbf{1 , 0 0 0}$	$\mathbf{1 , 1 6 0}$	$58,00,000$	6,000	$\mathbf{1 , 1 6 , 0 0 0}$	$59,22,000$
2,000	$\mathbf{1 , 1 4 0}$	$57,00,000$	3,000	$\mathbf{2 , 2 8 , 0 0 0}$	$59,31,000$
3,000	$\mathbf{1 , 1 2 0}$	$56,00,000$	$\mathbf{2 , 0 0 0}$	$\mathbf{3 , 3 6 , 0 0 0}$	$\mathbf{5 9 , 3 8 , 0 0 0}$

Conclusion: When order size is $\mathbf{1 , 0 0 0}$ tonnes, cost is least at Rs. $\mathbf{5 9 , 2 2 , 0 0 0}$. Thus EOQ is $\mathbf{1 , 0 0 0}$ tonnes.

Q. 27

Annual requirement of a particular item of inventory is $\mathbf{1 0 , 0 0 0}$ units. Inventory carrying cost per unit per year is 20% and ordering cost is Rs. 40 per order. The price quoted by the supplier is Rs. 4 per unit. However the supplier is ready to give a discount of 5% for orders of $\mathbf{1 , 5 0 0}$ unit or more. Is it worthwhile to avail of the discount offer?

B.Com (H) 2006 Regular [6 Marks]

(a) $\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathbf{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year
$\mathrm{EOQ}=\sqrt{\frac{2 \times 10,000 \times 40}{0.8}}=1,000$ units
(i) When order is for EOQ of 1,000 unit , total cost will be:

Materials Cost (10,000 units @ Rs. 4) 40,000
Ordering Cost ($\mathbf{1 0 , 0 0 0 / 1 , 0 0 0 \times \text { Rs. 40) }}$
400
Storage cost ($1000 \times 1 / 2 \times 4 \times 20 \%$)
$\begin{array}{r}400 \\ \hline 40,800\end{array}$
(ii) When ordering quantity is 1,500 unit at 5% discount on price

Materials cost (10,000 units @ Rs. 3.80) 38,000
Ordering cost (10,000/1,500 \times Rs. 40) 267
$\begin{array}{lr}\begin{array}{l}\text { Storage cost }(1500 \times 1 / 2 \times \text { Rs. } 3.80 \times 20 \%) \\ \text { Total cost }\end{array} & \frac{570}{38,837}\end{array}$

It is cheaper to buy quantities of 1,500 unit at 5% discount. Therefore offer of discount should be availed.

Q. 28

A company manufactures a special product, which requires a component 'Alpha'. The following particulars are available for 2014:

Annual Demand	8,000 units
Cost of placing an order	Rs. 200 per order
Cost per unit of 'Alpha'	Rs. 400
Carrying cost \% p.a.	$\mathbf{2 0 \%}$

The company has been offered a discount of 4% on the purchase of 'Alpha' provided the order size is 4,000 components at a time.

Required:

(i) Calculate Economic Order quantity.
(ii) Advise whether the discount offer can be accepted.

B.Com (H) 2013 Regular [8 Marks]

[(i) 200 units (ii) No
(Total Cost without discount Rs. 32,16,000 or Total Cost with discount Rs. 32,26,000]

Q. 29

ABC Co. buys in lots of 125 boxes which is a three month's supply The cost per box is Rs. 125 and the ordering cost Rs. 250 per order. The inventory carrying cost is estimated at 20% of unit value per annum. You are required to ascertain.
(i) The total annual cost of existing inventory policy
(ii) How much money would be saved by employing the economic order quantity?
B.Com (H) 2008 [5 Marks] / 2013
$\mathrm{EOQ}=\sqrt{\frac{2 \times U \times P}{S}}$
$\mathbf{U}=$ Annual Usage or Consumption
$\mathbf{P}=$ Cost of placing an order
S = Cost of storing one unit for a year

$$
E O Q=\sqrt{\frac{2 \times 500 \times 250}{25}}=100 \text { units }
$$

Total Cost per annum $=(125 \times 500)+\left(\frac{100}{2} \times 125 \times 20 \%\right)+(5 \times 250)$

$$
=62,500+1,250+1,250=\text { Rs. } 65,000
$$

Existing Annual Cost $=(125 \times 4 \times 125)+(250 \times 4)+(125 / 2 \times 125 \times 20 \%)$

$$
=62,500+1,000+1,562.50=\text { Rs. } 65,062.50
$$

Money Saved by EOQ = Rs. 65,062.50 - Rs. 65,000 = Rs. 62.50

Q. 30

JP Ltd. manufacturers of a special products, follows the policy of EOQ (Economic order quantity) for one its companies. The component's details as follows:

Particulars	Rs.
Purchase price per components	200
Cost of an order	100
Annual cost of carrying one unit in inventory	$\mathbf{1 0 \%}$ of purchase price
Total cost of inventory and ordering per annum	4,000

The company has been offered a discount of $\mathbf{2 \%}$ on the price of the component provided the lot size is $\mathbf{2 , 0 0 0}$ components at a time.

You are required to:

(a) Compute the EOQ
(b) Advise whether the quantity discount offer can be accepted.
(Assume that the inventory carrying cost does not very according to discount policy)
(c) Would your advice differ if the company is offered 5\% discount on a single order?

CA Inter November 1994
(a) Computation of EOQ.

Basic Calculations:
(i) Purchase per components Rs. 200
(ii) Cost of an order(P)
(iii) Annual cost of carrying one unit of inventory is (s)
(iv) Total cost of (carrying) inventory and ordering per annum

Rs. 100
(v) Let the total annual usage be U

10\% of cost of Rs. 20
Rs. 4,000

In order to compute EOQ by using the above data we require the figure of total annual usage of inventory. This can be done through the following equation
Total Cost of Inventory Ordering and Carrying $=\sqrt{2 \times U \times P \times S}$
\Rightarrow Rs. $4,000=\sqrt{2 \times U \times 100 \times 20}$
\Rightarrow Rs. $4,000=\sqrt{4,000 U}$
$\Rightarrow 4,000 \mathrm{U}=1,60,00,000$
$\mathrm{U}=4,000$ units
Thus, annual consumption is $\mathbf{4 , 0 0 0}$ units

EOQ $=\sqrt{\frac{2 \times U \times P}{S}}=\sqrt{\frac{2 \times 4,000 \times 100}{20}}=200$ units
(b) No of order $=\mathbf{2}$ (When order size is 2,000)

If a discount of $\mathbf{2 \%}$ on the price of the components is available if an order in the lot size of $\mathbf{2 , 0 0 0}$ components is given, the cost shall be:

Ordering Cost (2×100)
Add: Storage Cost (1,000 $\times 20$)
Less: Saving on account of discount Net Cost

Rs. 200
Rs. 20,000
Rs.20, 200
Rs. 16,000
Rs. 4,200

Since the net cost of Rs. 4,200 is higher than the present cost of Rs. 4,000, this offer should not be accepted.
(c) If a discount of 5% on the price of the component is offered if the a single order of $\mathbf{4 , 0 0 0}$ components is placed, the total cost shall be:
Ordering cost (1×100)
Add: Storage cost $(2,000 \times 20)$
Less: Saving on account of discount $(5 \times 4,000 \times 20)$
Net Cost
Rs. 100
Rs. 40,000
Rs. 40,100
Rs. 40,000
Rs. 100

Since the Net Cost is much less than the present cost of Rs. 4,000, this offer must be accepted.

Type 4:- LIFO \& FIFO

Q. 31

10

From the following information prepare stores ledger account as per FIFO method.

```
\(1^{\text {st }}\) January operating Stock
\(5^{\text {th }}\) January purchase
\(10^{\text {th }}\) January purchase
\(20^{\text {th }}\) January purchase
\(2^{\text {nd }}\) January issues
\(7^{\text {th }}\) January issues
\(12^{\text {th }}\) January issues
12 January issues

January issues
```

200 pieces @ Rs. 2 each

200 pieces @ Rs. 2 each
100 pieces @ Rs. 2.20 each
150 pieces @ Rs. 2.40 each
180 pieces @ Rs. 2.50 each
150 pieces
100 pieces
100 pieces
200 pieces

B.Com (P) 2004 (Regular) [5 Marks]

Store Ledger FIFO Basis

Date	Particular	Receipt			Issues			Balance		
		Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
1/1	Opening Stock	-	-	-	-	-	-	200	2.00	400
2/1	Issued	-	-	-	150	2.00	300	50	2.00	100
5/1	Purchase	100	2.20	220	-	-	-	$\left\{\begin{array}{l}50 \\ 100\end{array}\right.$	$\begin{aligned} & 2.00 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 100 \\ & 220 \end{aligned}$
7/1	Issued	-	-	-	$\left\{\begin{array}{l} 50 \\ 50 \end{array}\right.$	$\begin{aligned} & \hline 2.00 \\ & 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	50	2.20	110
10/1	Purchase	150	2.50	360	-	-	-	$\left\{\begin{array}{l}50 \\ 150\end{array}\right.$	$\begin{aligned} & \hline 2.20 \\ & 2.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 360 \\ & \hline \end{aligned}$
12/1	Issued	-	-	-	$\left\{\begin{array}{l} 50 \\ 50 \end{array}\right.$	$\begin{aligned} & 2.20 \\ & 2.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & \hline \end{aligned}$	100	2.40	240
20/1	Purchase	180	2.50	450	-	-	-	$\left\{\begin{array}{l}100 \\ 180\end{array}\right.$	$\begin{aligned} & \hline 2.40 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 450 \\ & \hline \end{aligned}$
28/1	Issued	-	-	-	$\left\{\begin{array}{l} 100 \\ 100 \end{array}\right.$	$\begin{aligned} & \hline 2.40 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 250 \\ & \hline \end{aligned}$	80	2.50	200

Q. 32

From the following information prepare store ledger account as per FIFO method

January 2009	
1 January	Opening balance 500 unit @ Rs. 25 P. u.
3 January	Issue 70 units
4 January	Issue 100 unit
8 January	Issue 80 unit
13 January	Received 200 unit @ Rs. 24 per unit
14 January	Returned to stores, 15 unit @ Rs. 24 PU
16 January	Issue 180 unit
20 January	Received 240 unit @ Rs. 24.75 per unit
24 January	Issue 304 unit
25 January	Received 320 unit @ Rs. 24 per unit
26 January	Issue 112 unit
27 January	Returned to stores 12 unit @ Rs. 24.50 P.U
28 January	Received 100 unit @ Rs. 25 per unit.

On $15^{\text {th }}$ January there was a shortage of 5 units. Again, it was found a shortage of 8 units on $27^{\text {th }}$ January
B.Com (P) 2013(External) [9 Marks]

Store Ledger Account
As per FIFO Method

Date	Receipt			Issues			Balance		
2009	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
Jan. 1	-	-	-	-	-	-	500	25	12,500
Jan. 3				70	25	1750	430	25	10,750
Jan. 4				100	25	2500	330	25	8,250
Jan. 8				80	25	2000	250	25	6,250
Jan. 13	200	24	4800				$\begin{aligned} & \hline 250 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,250 \\ & 4,800 \\ & \hline \end{aligned}$
Jan. 14	15	24	360				$\begin{gathered} 250 \\ 200 \\ 15 \end{gathered}$	$\begin{aligned} & 25 \\ & 24 \\ & 24 \end{aligned}$	$\begin{gathered} 6,250 \\ 4,800 \\ 360 \end{gathered}$
Jan. 15				5 Shortage	25	125	$\begin{gathered} \hline 245 \\ 200 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 25 \\ & 24 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{6 , 1 2 5} \\ \mathbf{4 , 8 0 0} \\ \mathbf{3 6 0} \end{gathered}$
Jan. 16				180	25	4500	$\begin{gathered} 65 \\ 200 \\ 15 \end{gathered}$	$\begin{aligned} & 25 \\ & 24 \\ & 24 \end{aligned}$	$\begin{gathered} 1,625 \\ 4,800 \\ 360 \end{gathered}$
$\begin{gathered} \hline \text { Jan. } \\ 20 \end{gathered}$	240	24.75	5940				$\begin{gathered} \hline 65 \\ 200 \\ 15 \\ 240 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 24 \\ 24 \\ 24.75 \end{gathered}$	$\begin{gathered} 1,625 \\ 4,800 \\ 360 \\ 5,940 \end{gathered}$
$\begin{gathered} \text { Jan. } \\ 24 \end{gathered}$				$\begin{gathered} 65 \\ 200 \\ 15 \\ 24 \end{gathered}$	$\begin{gathered} 25 \\ 24 \\ 24 \\ 24.75 \end{gathered}$	$\begin{gathered} 1625 \\ 4800 \\ 360 \\ 594 \end{gathered}$	216	24.75	5,346
$\begin{gathered} \hline \text { Jan. } \\ 25 \\ \hline \end{gathered}$	320	24	7680				$\begin{aligned} & \hline 216 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 24.75 \\ 24 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 5,346 } \\ & 7,680 \\ & \hline \end{aligned}$
$\begin{gathered} \text { Jan. } \\ 26 \\ \hline \end{gathered}$				112	24.75	2772	$\begin{aligned} & \hline 104 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 24.75 \\ 24 \end{gathered}$	$\begin{aligned} & 2,574 \\ & 7,680 \end{aligned}$
Jan. 27	12	24.50	294				$\begin{gathered} \hline 104 \\ 320 \\ 12 \end{gathered}$	$\begin{gathered} 24.75 \\ 24 \\ 24.50 \end{gathered}$	$\begin{gathered} \hline 2,574 \\ 7,680 \\ 294 \end{gathered}$
$\begin{gathered} \text { Jan. } \\ 27 \end{gathered}$				8 Shortage	24.75	198	$\begin{gathered} 96 \\ 320 \\ 12 \end{gathered}$	$\begin{gathered} 24.75 \\ 24 \\ 24.50 \end{gathered}$	$\begin{gathered} \text { 2,376 } \\ 7,680 \\ 294 \end{gathered}$
$\begin{gathered} \hline \text { Jan. } \\ 28 \end{gathered}$	100	25	2500				$\begin{gathered} \hline 96 \\ 320 \\ 12 \\ 100 \end{gathered}$	$\begin{gathered} 24.75 \\ 24 \\ 24.50 \\ 25 \end{gathered}$	$\begin{gathered} \hline \text { 2,376 } \\ 7,680 \\ 294 \\ 2,500 \end{gathered}$

Q. 33

From the following information prepare store ledger account as per LIFO and FIFO method;

January 1, 2003	Received	$\mathbf{1 , 0 0 0}$ units	@ Rs. 1 per unit
January10, 2003	Received	260 units	@ Rs. 1.05 per unit
January 20, 2003	Issued	700 units	
January 21, 2003	Received	400 units	@ Rs. 1.15 per unit
January 22, 2003	Received	300 units	@ Rs. 1.25 per unit
January 23, 2003	Issued	620 units	
January 24, 2003	Issued	240 units	
January 25, 2003	Received	500 unit	@ Rs. 1.10 per unit
January 26, 2003	Issued	380 units	

B.Com (P) 2005 (Regular) [7 Marks]

Store Ledger by LIFO Method

Date	Receipt			Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
Jan. 1	1,000	1.00	1,000	-	-	-	1,000	1.00	1,000
Jan. 10	260	1.05	273	-	-	-	$\begin{gathered} 1,000 \\ 260 \end{gathered}$	$\begin{aligned} & 1.00 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1,000 \\ 273 \end{gathered}$
Jan. 20	-	-	-	$\left\{\begin{array}{l} 260 \\ 440 \end{array}\right.$	$\begin{aligned} & 1.05 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 273 \\ & 440 \end{aligned}$	560	1.00	560
Jan. 21	400	1.15	460				$\begin{aligned} & \hline 560 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \hline 560 \\ & 460 \end{aligned}$
Jan. 22	300	1.25	375				$\begin{aligned} & \hline 560 \\ & 400 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.10 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 560 \\ & 460 \\ & 375 \end{aligned}$
Jan. 23				$\begin{aligned} & 300 \\ & 320 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 375 \\ & 368 \end{aligned}$	$\begin{gathered} \hline 560 \\ 80 \end{gathered}$	$\begin{aligned} & 1.00 \\ & 1.15 \end{aligned}$	$\begin{gathered} 560 \\ 92 \end{gathered}$
Jan. 24				$\left\{\begin{array}{l} 80 \\ 160 \end{array}\right.$	$\begin{aligned} & 1.15 \\ & 100 \end{aligned}$	$\begin{gathered} \hline 92 \\ 160 \end{gathered}$	400	1.00	400
Jan. 25	500	1.10	550				$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.10 \end{aligned}$	$\begin{array}{r} 400 \\ 550 \\ \hline \end{array}$
Jan. 26				380	1.10	418	$\begin{aligned} & 400 \\ & 120 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 400 \\ & 132 \end{aligned}$

Store Ledger by FIFO Method

Date 2003	Receipt				Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.	
Jan.1	1,000	1.00	1,000	-	-	-	1,000	1.00	1,000	
Jan.10								1,000	1.00	
1,000										
	260	1.05	273	-	-	-	260	1.05	273	
Jan.20	-	-	-	700	1.00		300	1.00	300	
							260	1.05	273	
Jan.21	400	1.15	460				300	1.00	300	
							260	1.05	273	
							400	1.15	460	
Jan.22	300	1.25	375				300	1.00	300	
							260	1.05	273	
							400	1.15	460	
							300	1.25	375	

Jan.23				$\left\{\begin{array}{c}300 \\ 260\end{array}\right.$	1.00	300	340	1.15	391
				60	1.15	69	300	1.25	375
				240	1.15	276	100	1.15	115
Jan.24							300	1.25	375
							100	1.15	115
	Jan.25	500	1.10	550			300	1.25	375
							500	1.10	550
Jan.26					100	1.15	115	20	1.25
				280	1.25	350	500	1.10	550

Q. 34

From the following information prepare stores ledger card under LIFO and FIFO system. Calculate the value of closing Stock under both the system:

January 1	Opening Stock	200 pieces	@Rs. 2.00 each
5	Purchase	100 pieces	@ Rs. 2.20 each
10	Purchase	150 pieces	@ Rs. 2.40 each
20	Purchase	120 pieces	$@$ Rs. 2.50 each
22	Issue	150 pieces	
25	Issue	100 pieces	
27	Issue	100 pieces	
28	Issue	200 pieces	

B.Com (P) 2006 (External) [10 Marks]

Store Ledger Card (LIFO)

Date	Receipt			Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
Jan. 1							200	2.00	400
Jan. 5	100	2.20	220				$\left\{\begin{array}{l}200 \\ 100\end{array}\right.$	$\begin{aligned} & \hline 2.00 \\ & 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 220 \\ & \hline \end{aligned}$
Jan.	150	2.40	360				$\left\{\begin{array}{l}200 \\ 100 \\ 150\end{array}\right.$	2.00 2.20 2.40	$\begin{aligned} & 400 \\ & 220 \\ & 360 \end{aligned}$
$\begin{gathered} \text { Jan. } \\ 20 \end{gathered}$	120	2.50	300				$\left\{\begin{array}{l}200 \\ 100 \\ 150 \\ 120\end{array}\right.$	2.00 2.20 2.40 2.50	$\begin{aligned} & 400 \\ & 220 \\ & 360 \\ & 300 \end{aligned}$
Jan. 22				$\begin{gathered} 120 \\ 30 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 2.40 \end{aligned}$	$\begin{gathered} 300 \\ 72 \end{gathered}$	$\left\{\begin{array}{l}200 \\ 100 \\ 120\end{array}\right.$	2.00 2.20 2.40	$\begin{aligned} & 400 \\ & 220 \\ & 288 \\ & \hline \end{aligned}$
Jan. 25				100	2.40	240	$\left\{\begin{array}{l}200 \\ 100 \\ 20\end{array}\right.$	2.00 2.20 2.40	$\begin{gathered} 400 \\ 220 \\ 48 \end{gathered}$
$\begin{gathered} \text { Jan. } \\ 27 \end{gathered}$				$\left\{\begin{array}{l}20 \\ 80\end{array}\right.$	$\begin{aligned} & 2.40 \\ & 2.20 \end{aligned}$	$\begin{gathered} 48 \\ 176 \end{gathered}$	$\left\{\begin{array}{c}200 \\ 20\end{array}\right.$	$\begin{aligned} & 2.00 \\ & 2.20 \end{aligned}$	$\begin{gathered} 400 \\ 44 \end{gathered}$
$\begin{gathered} \text { Jan. } \\ 28 \end{gathered}$				$\left\{\begin{array}{c}20 \\ 180\end{array}\right.$	$\begin{aligned} & \hline 2.20 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{gathered} 44 \\ 360 \end{gathered}$	20	2.00	40

Store Ledger Card (FIFO)

Date	Receipt			Issues			Balance		
2008	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
Jan 1							200	2.00	400
Jan. 5	100	2.20	220				$\begin{aligned} & \hline 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 400 \\ & 220 \end{aligned}$
Jan. 10	150	2.40	360				$\begin{aligned} & \hline 200 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.20 \\ & 2.40 \end{aligned}$	$\begin{aligned} & 400 \\ & 220 \\ & 360 \end{aligned}$
Jan 20	120	2.50	300				$\begin{aligned} & 200 \\ & 100 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.20 \\ & 2.40 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 400 \\ & 220 \\ & 360 \\ & 300 \end{aligned}$
Jan. 22				150	2.00	300	$\begin{gathered} \hline \mathbf{5 0} \\ 100 \\ 150 \\ 120 \\ \hline \end{gathered}$	$\begin{aligned} & 2.00 \\ & 2.20 \\ & 2.40 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 220 \\ & 360 \\ & 300 \\ & \hline \end{aligned}$
Jan. 25				$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\begin{gathered} \hline 50 \\ 150 \\ 120 \end{gathered}$	$\begin{aligned} & \hline 2.20 \\ & 2.40 \\ & 2.50 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 360 \\ & 300 \end{aligned}$
Jan. 27				$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.40 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 240 \\ 300 \\ \hline \end{array}$
Jan. 28				$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.40 \\ & 2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 250 \\ & \hline \end{aligned}$	20	2.50	50

FIFO \& LIFO \& Simple Average

Q. 35

From the following details in respect of a materials item for the month of December 2014, calculate cost of materials consumed and the value of closing Stock under (I) LIFO and (II) Simple average price method.

December 2014
Opening Stock ($1^{\text {st }}$ December) 500 unit @ Rs. 2 per unit Purchase:
$5^{\text {th }}$ December 1000 unit @ Rs. 3 per unit
$8^{\text {th }}$ December 1500 unit @ Rs. 4 per unit Issued production:
$10^{\text {th }}$ December

1,600 unit
B.Com (P) 2006 (External) [8 Marks]

LIFO Method

Date	Receipt			Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
Dec.1	-	-	-	-	-	-	500	2	1,000
Dec. 5	1,000	3	3,000				500	2	1,000
							1,000	3	3,000
Dec. 8	1,500	4	6,000				500	2	1,000
							1,000	3	3,000
							1,500	4	6,000
Dec. 10				1,500	4	6,000	500	2	1,000
				100	3	300	900	3	2,700

Cost of Materials Consumed = Rs. 6,300
Value of Closing Stock (1,400 units) $=$ Rs. 3,700
Simple Average Method

Date	Receipt			Issues			Balance	
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Amt.
Dec. 1	-	-	-	-	-	-	500	1,000
Dec. 5	1,000	3	3,000				1,500	4,000
Dec. 8	1,500	4	6,000				3,000	10,000
Dec.10	-			1,600	3	4,800	1,400	5,200

Working Note: - Average Rate $=\frac{2+3+4}{3}=$ Rs. 3
Value of Closing Stock (1,400 units) = Rs. 5,200

Q. 36

From the following information, prepare store ledger account as per Simple average price method;

January 1, 2013	Opening Stock	500 units	@ Rs. 20 per unit
January 4, 2013	Received	$\mathbf{4 0 0}$ units	@ Rs. 21 per unit
January 6, 2013	Issued	$\mathbf{6 0 0}$ units	
January 8, 2013	Received	$\mathbf{8 0 0}$ units	@ Rs. 24 per unit
January 9, 2013	Issued	500 units	
January 13, 2013	Issued	300 units	
January 24, 2013	Purchased	500 units	@ Rs. 25 per unit
January 28, 2013	Issued	$\mathbf{4 0 0}$ unit	

Solution:-

> Simple Average Method

Date	Receipt			Issues			Balance	
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Amt.
Jan. 1	-	-	-	-	-	-	500	10,000
Jan. 4	400	21	8,400	-	-	-	900	18,400
Jan. 6	-	-	-	600	20.50	12,300	300	6,100
Jan. 8	800	24	19,200	-	-	-	1,100	25,300
Jan. 9	-	-	-	500	22.50	11,250	600	14,050
Jan. 13	-	-	-	300	24.00	7,200	300	6,850
Jan. 24	500	25	12,500	-	-	-	800	19,350
Jan. 28	-	-	-	400	24.50	9,800	400	9,550

Q. 37

From the following information, prepare store ledger account as per Simple average price method;

2010		Units	Price per unit(Rs.)
Jan. 2	Purchased	$\mathbf{4 , 0 0 0}$	4.00
Jan. 20	Purchased	$\mathbf{5 0 0}$	$\mathbf{5 . 0 0}$
Feb. 5	Issued	$\mathbf{2 , 0 0 0}$	$\mathbf{6 . 0 0}$
Feb.10	Purchased	$\mathbf{4 , 0 0 0}$	
Feb.12	Issued	$\mathbf{1 , 0 0 0}$	
March 2	Issued	$\mathbf{2 , 0 0 0}$	
March 5	Issued	$\mathbf{4 , 5 0 0}$	$\mathbf{5 . 5 0}$
March 15	Purchased	$\mathbf{3 , 0 0 0}$	
March 20	Issued		

Hints: Feb 5 @ Rs.4.5; Feb 12 @ Rs.5; March 2 \& 5 @ Rs.6; March 20 @ 5.75

FIFO \& LIFO \& Weighted Average

Q. 38

The following transaction took place in respect of a materials item:

	Receipt quantity	Rate (Rs.)	Issue quantity
March 2	200 units	2.00	-
March 10	300 units	2.40	-
March 15	-	-	250 units
March 18	250 units	-2.60	200 units
March 20	-	-	

Prepare a stores ledger sheet using:
(i) LIFO Method
(ii) Weighted Average Method

B.Com (P) 2010 (Regular) [6 Marks]

Store Ledger Account by
LIFO Method

Date	Receipt			Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
March 2	200	2.00	400	-	-	-	200	2.00	400
10	300	2.40	720	-	-	-	200	2.00	400
15	-	-	-	250	2.40	600	200	2.00	400
							50	2.40	120
18	250	2.60	650	-	-	-	200	2.00	400
							50	2.40	120
								250	2.60
650									
20	-	-	-		2.60	520	200	2.00	400
							50	2.40	120
							30		2.60

Store Ledger Account by
Weighted Average Method

Date	Receipt			Issues			Balance		
	Qty.	Rate	Amt.	Qty.	Rate	Amt.	Qty.	Rate	Amt.
March	200	2.00	400	-	-	-	200	2.00	400
10	300	2.40	720	-	-	-	500	2.24	1120
15	-	-	-	250	2.24	560	250	2.24	560
18	250	2.60	650	-	-	-	500	2.42	1210
20	-	-	-	200	2.42	484	300	2.42	726

Q. 39

Show how the times given ahead relating to purchase and issue of a raw materials will appear in the stores ledger using LIFO, FIFO and Weighted Average Method of pricing the Materials issue.

2010		Units	Price per unit(Rs.)
Feb.1	Opening balance	300	20
Feb. 5	Purchase	200	22
Feb.11	Issue	150	$?$
Feb.22	Purchase	200	23
Feb.24	Issue	150	$?$
Feb.28	Issue	200	$?$
	Shortage	5	$?$

B.Com (H) 2010 [15Marks]

[LIFO Rs.3,900 ; FIFO Rs. 4,485; Weighted Average Method Rs. 4,212]

Q. 40

Oil India is a Bulk Distributor of oil. A periodic inventory of oil on hand is taken when the books are closed at the end of each month. The following summary of information is available for the month of December.

Sales Rs. 9,45,000
General Administrative Cost Rs. 25,000
Opening Stock 1,00,000 liters @ Rs. 3 per litre; Rs. 3,00,000 purchases (including freight in)
December 1, 2,00,000 liters @ Rs. 2.85 per liter
December 30, 1,00,000 liters @ Rs. 3.03 per liter
Closing Stock December 31, 1,30,000 liters
Compute the following by the First in First Out, Weighted average and Last in First out Method of inventory costing.
a) Value of Inventory on December 31
b) Amount of Cost of Goods Sold for December
c) Profit or Loss for December

B.Com (H) 2007 Regular [11 Marks]

First in First Out (FIFO) Method

(a) Closing inventory on December 31

$\mathbf{1 , 0 0 , 0 0 0}$ liters @ Rs. 3.03	$\mathbf{3 , 0 3 , 0 0 0}$
$\mathbf{3 0 , 0 0 0}$ liters @ Rs. 2.85	$\underline{85,500}$
Closing Stock (value of inventory)	$\mathbf{3 , 8 8 , 5 0 0}$

(b) Cost of goods sold Opening Stock

3,00,000
Add: Purchase December 1 (2,00,000 @ Rs. 2.85)
5,70,000
Add: Purchase December 30 (1,00,000 liters @ Rs. 3.03 per liter) $\frac{3,03,000}{11,73,000}$
Less: Closing Stock (value of inventory)
$\begin{array}{r}\mathbf{3 , 8 8 , 5 0 0} \\ \hline 7,84,000\end{array}$
(c) Calculation of profit

Cost of goods sold
7,84,500
Add: General Administrative Cost
Total Cost
$\frac{25,000}{8,09,500}$
Sales
Profit (Sales - Total Cost)
$\frac{\mathbf{9 , 4 5 , 0 0 0}}{\mathbf{1 , 3 5 , 5 0 0}}$

Weighted Average Method

$\begin{array}{ll}\text { Closing Stock valuation } & \mathbf{3 , 9 0 , 0 0 0} \\ \mathbf{1 , 3 0 , 0 0 0} \text { liters @ Rs. } 3 & \end{array}$
The rate of Rs. 3 is calculated as follows:
On first Receipt $=\frac{(1,00,000 \times 3)+(2,00,000 \times 2.85}{1,00,000+2,00,000}=\frac{\mathbf{8 , 7 0 , 0 0 0}}{3,00,000}=$ Rs. 2.90
Last Receipt $=\frac{(\mathbf{3 0 , 0 0 0} \times 2.95)+(\mathbf{1 , 0 0 , 0 0 0} \times 3.03}{1,00,000+2,00,000}=\frac{3,90,000}{1,30,000}=$ Rs. 3.00
Cost of Goods sold (Purchase Cost + Opening Stock) 11,73,000
Less: Closing Stock $\underline{(390,000)}$

Cost of Goods sold \quad| $7,83,000$ |
| :--- |

Add: General Administrative Cost $\quad \mathbf{2 5 , 0 0 0}$
Total sale $\quad \mathbf{8 , 0 8 , 0 0 0}$
Sales $\quad 9,45,000$
Profit
1,37,000

Last in First Out Method

Particulars	Rs.
30,000 Liters @ Rs. $\mathbf{3}$	$\mathbf{9 0 , 0 0 0}$
$\mathbf{1 , 0 0 , 0 0 0}$ Liters @ Rs. 3.03	$\mathbf{3 , 0 3 , 0 0 0}$
Value of Closing Stock	$\mathbf{3 , 9 3 , 0 0 0}$
Value of Purchase + Opening Stock	$\mathbf{1 1 , 7 3 , 0 0 0}$
Less: Closing Stock	$\mathbf{(3 , 9 3 , 0 0 0}$
Cost of Goods Sold	$\mathbf{7 8 0 , 0 0 0}$
Add: General Administrative Cost	$\mathbf{2 5 , 0 0 0}$
Total Cost	$\mathbf{8 , 0 5 , 0 0 0}$
Sales	$\mathbf{9 , 4 5 , 0 0 0}$
Profit	$\mathbf{1 , 4 0 , 0 0 0}$

Type 5:- Mics. Questions

Q. 41

A Consignment consisting of 4 grades of materials was purchased for Rs. 1,20,000. Storekeeper sorted them out an recorded the following:
Grade A-4,000 Units
Grade B-8,000 Units
Grade C- 10,000 Units
Grade D-12,000 Units
Total sales of grade A amounted to Rs. 16,000 (rate of profit being $33 \frac{1}{\mathbf{3}} \%$ of cost) and those of B at price 1 $\frac{1}{2}$ time that of A, but the rate of profit was $33 \frac{1}{3} \%$ of sales. Similarly, Grade C Materials was sold for Rs. 50,000 , yielding a profit of $\mathbf{2 0 \%}$ of sales.
Calculate the purchase price of each grade on the basis of the above information.

B.Com (P) 2004 (Supply) [5 Marks]

Particulars		Rs.
Grade A		
Cost of Grade A sales		16,000
Less: Profit ($33 \frac{1}{3} \%$ on cost or $\mathbf{2 5 \%}$ on sales)		4,000
		12,000
Total cost of A		
Cost price per unit of $A=\frac{12,000}{4,000}=$ Rs. 3 per unit		
Selling price per unit of $A=\frac{16,000}{4,000}=$ Rs. 4 per unit		
Grade B		
Selling price per unit Rs. 6		
Less: Profit ($33 \frac{1}{3} \%$ on sales) \quad Rs. 2		
Cost per unit of B Rs. 4		
Total cost of B 8,000 $\times 4$		32,000
Grade C		
Total Sales Rs. 50,000		
Less: Profit (20% on sales) $\quad \frac{\text { Rs. } 10,000}{\text { Rs. 40,000 }}$		
Total Cost		40,000
Cost per unit $\quad \frac{40,000}{10,000}=$ Rs. 4 per unit		
Grade D	1,20,000	
$\begin{array}{lll}\text { Less: Total Cost of } & \text { A } & \text { Rs. } 12,000 \\ & \text { B } & \text { Rs. } 32,000 \\ & \text { C } & \text { Rs. } 40,000\end{array}$		
	84,000	
	36,000	
Cost per unit $=\frac{36,000}{12,000}=$ Rs. 3 per unit	36,000	

Thus, cost details are -

Grade of Materials	Units	Per unit	Total
A	$\mathbf{4 , 0 0 0}$	3	$\mathbf{1 2 , 0 0 0}$
B	$\mathbf{8 , 0 0 0}$	4	$\mathbf{3 2 , 0 0 0}$
C	$\mathbf{1 0 , 0 0 0}$	$\mathbf{4}$	$\mathbf{4 0 , 0 0}$
D	$\mathbf{1 2 , 0 0 0}$	3	$\mathbf{3 6 , 0 0 0}$
			$\mathbf{1 , 2 0 , 0 0 0}$

Q. 42

4,000 lbs. of wool costing Rs. 72,000 was issued for the manufactures of 36 " size pullover. On the completion of manufactures of pullovers, the following information furnished:
(i) 1,600 good pullovers 36 " size of $\mathbf{2} \mathbf{l b s}$. each were manufactured.
(ii) 100 lbs . of wool in scrapped and realised Rs. 700.
(iii) 200 lbs. of off cuts were used for the manufactures of another product of hosiery. The market value of this is Rs. 1,800 .
(iv) 200 pullovers were found defective and were rectified at an additional materials cost of Rs. 500.

You are required to find out the cost of materials of one pullover.

$$
\text { B.Com (P) } 2005 \text { (Regular) [7 Marks] }
$$

Particulars	Rs.
Cost of Materials Issued	$\mathbf{7 2 , 0 0 0}$
Less: Sale of Scrap	$\mathbf{7 0 0}$
	$\mathbf{7 1 , 3 0 0}$
Less: Off cut for the manufacture of another product (Spoilage)	$\mathbf{1 , 8 0 0}$
	$\mathbf{6 9 , 5 0 0}$
Add: Cost of rectification of 200 defective Pullover	500
Cost of 1,800 (Good 1,600 + 200 defective) Pullover of 2 lbs. each	$\mathbf{7 0 , 0 0 0}$

Cost of Materials per Pullover $=$ Rs. 70,000 / 1,800 $=$ Rs. 38.89

Q. 43

A furniture manufacturer purchased 10,000 cft. Of timber logs on $1^{\text {st }}$ October $2014 @$ Rs. 10 per cft. and stored them in his timber yard for six months for seasoning. In this timber yard the following items of expenses were incurred during the period of seasoning:
(i) Rent of the yard ($\mathbf{2 , 0 0 0}$ sq. ft.) Rs. 250 per month.
(ii) Salaries of 2 watchmen and khalasis @ Rs. 250 per month each.
(iii) Incidental expenses of maintenance, lighting etc. @ $\mathbf{1 5 0}$ per month.
(iv) Annual shares of general overheads expenses of the business Rs.2,000.
(v) Insurance charges for the logs to be seasoned @ 1% on the value of unseasoned logs for the period of seasoning -50% of floor area of the yard had been set apart for seasoning timer and the remaining floor area is occupied by shops making furniture.
Loss in volume of logs due to seasoning: 10%. Calculate the price to be charged on issue of the seasoned logs per cft. to the nearest rupee.

Particulars	Quantity	Rs.
Cost of timber	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 , 0 0 , 0 0 0}$
Rent (1/2 shares)		750
Salaries of watchmen etc. (1/2 shares)		$\mathbf{1 , 5 0 0}$
Incidental expenses (1/2 shares)		$\mathbf{4 5 0}$
Overheads expenses (1/2 shares)		500
Insurance	$\mathbf{1 , 0 0 0}$	$\mathbf{1 , 0 0 0}$
Loss in volume (10\%)	$\mathbf{9 , 0 0 0}$	$\mathbf{1 , 0 4 , 2 0 0}$
Total Cost		

Cost per cft. $=\frac{\mathbf{1 , 0 4 , 2 0 0}}{9,000}=$ Rs. 11.57

Q. 44

A consignment consisted of two chemicals A and B. The invoice gave the following data:

	Rs.
Chemical A ; 4 tonnes at Rs. 5 per kg	$\mathbf{2 0 , 0 0 0}$
Chemical B ; 2 tonnes at Rs. 2 per kg	$\mathbf{4 , 0 0 0}$
Sales Tax	$\mathbf{1 , 2 0 0}$
Freight	$\mathbf{9 0 0}$
Total	$\mathbf{2 6 , 1 0 0}$

A Shortage of 2 quintals in A and 1 quintal in B was noticed and it was considered normal. What rate per kg would you adopt for pricing issues assuming provision of $\mathbf{2 0 \%}$ towards further deterioration?

B.Com (H) 2012 [10 Marks]

	Chemical A $(\mathbf{K g})$	Chemical B (Kg)
Quantity	$\mathbf{4 , 0 0 0}$	$\mathbf{2 , 0 0 0}$
Less: Shortage	$\mathbf{2 0 0}$	$\mathbf{1 0 0}$
	$\mathbf{3 , 8 0 0}$	$\mathbf{1 , 9 0 0}$
Further deterioration (20\%)	$\mathbf{(7 6 0)}$	$\mathbf{(3 8 0)}$
Net quantity	$\mathbf{3 , 0 4 0}$	$\mathbf{1 , 5 2 0}$

$\left.\begin{array}{|l|c|c|}\hline & \text { (Rs.) } & \text { (Rs.) } \\ \hline \text { Cost } & \mathbf{2 0 , 0 0 0} & \mathbf{4 , 0 0 0} \\ \hline \text { Sales Tax @ 5 \% } & \mathbf{1 , 0 0 0} & 200 \\ \hline \text { Freight (as per weight) } & \mathbf{6 0 0} & \mathbf{3 0 0} \\ \hline \text { Total } & \mathbf{2 1 , 6 0 0} & \mathbf{4 , 5 0 0} \\ \hline \text { Issue Rate Per Kg } & \frac{21,600}{3,040}=\text { Rs. } 7.10 & \underline{4,500} \\ \hline 1,520\end{array}\right)$ Rs. 2.96

Q. 45

A factory use $\mathbf{4 0 0 0}$ varieties of inventory - In terms of inventory holding inventory usage the following information is complied.

No. of varieties of inventory	$\%$	\% value of inventory holding (Average)	\% of inventory usage (in end products)
3,875	96.875	20	5
110	2.750	30	10
15	0.375	50	85
4,000	100.000	100	100

Classify the item of inventory as per ABC analysis with reasons.

B.Com (H) 2003

A Materials, 15 Items representing 50% of the total value and $\mathbf{8 5 \%}$ of consumption.
B Materials, 110 Items representing $\mathbf{3 0 \%}$ of the total value and $\mathbf{1 0 \%}$ usage in the end products.
C Materials, 3875 Items representing $\mathbf{2 0 \%}$ in value and 5% in usage in the end products.

Q. 46

At what price per unit would part no. A 32 be entered in the Stores Ledger, if following invoice was received from a supplier;

Invoice	Rs.
200 units of Part No. A 32 @ Rs. 5	1,000
Less: 20% Discount	200
Add: Excise duty @ 15\%	800
Add: Packing charges (5 non- returnable boxes)	120
	920
	50

Notes:
(i) A 2% discount will be given for payment in 30 days
(ii) Documents substantiating payment of excise duty is enclosed for claiming MODVAT credit.

CA Inter 1995 Nov.

Computation of Price to be entered in Stores Ledger
(of Part No. A 32)

	Rs.
Cost of 200 units less trade discount	$\mathbf{8 0 0}$
Add: Packing Charges	50
Total	$\mathbf{8 5 0}$

Cost per unit = Rs.850/200units = Rs.4.25

Q. 47

The following data are available in respect of materials \mathbf{X} for the year ended $3{ }^{\text {st }}$ March 2014.

Opening Stock	$\mathbf{9 0 , 0 0 0}$
Purchase during the year	$2,70,000$
Closing Stock	$\mathbf{1 , 1 0 , 0 0 0}$

Calculate:
(i) Inventory turnover ratio, and
(ii) The number of days for which the average inventory is held.

B.Com (H) 2010 [6 Marks]

$$
\begin{aligned}
\text { Cost of Materials consumed } & =\text { Opening Stock }+ \text { Purchase }- \text { Closing Stock } \\
& =\mathbf{9 0 , 0 0 0}+2,70,000-\mathbf{1 , 1 0 , 0 0 0}=\text { Rs. } 2,50,000
\end{aligned}
$$

Average Stock $=\frac{90,000+1,10,000}{2}=1,00,000$
Inventory turnover ratio $=\frac{\text { Cost of Material Consumed }}{\text { Average Stock }}=\frac{2,50,000}{1,00,000}=2.5$ times
No. of days for which average inventory is held $=\frac{\mathbf{3 6 5} \text { days in the year }}{2.5 \text { times }}=146$ days

Q. 48

From the following data for $\mathbf{2 0 1 4}$ you are required to calculate:
(i) Inventory turnover ratio of Materials A
(ii) The Average Stock holding of this Materials in terms of number of days

Opening Stock 1st April 2013
Purchase during the year
Closing Stock 31st March 2014

20,000
1,04,000
12,000

B.Com (H) 2013 [7Marks]

Average inventory $=\frac{\text { Opening Stock }+ \text { Closing Stock }}{2}$

$$
=\frac{20,000+12,000}{2}=16,000 \text { units }
$$

Cost of Materials consumed $=(20,000+1,04,000)-12,000=$ Rs. $1,12,000$
Inventory turnover ratio $=\frac{\text { Cost of Material Consumed }}{\text { Average Stock }}=\frac{1,12,000}{16,000}=7$ times
Average Stock $=\frac{\text { No.of days in the year }}{\text { Inventory turnover ratio }}=\frac{365}{7}=52$ Days

Q. 49

From the following particulars, work out the issue rate per 1,000 of first class and second class bricks:
(a) Paid for the supply at the kiln site for 30 lakh first class bricks @ Rs. 30 per $\mathbf{1 , 0 0 0}$ bricks.
(b) Paid for the supply at the kiln site for 60 lakh second class bricks @ Rs. 25 per 1,000 bricks.
(c) Paid carriage charges for carrying all bricks from kiln to Stock yard @ Rs. $\mathbf{1 . 5 0}$ per 1,000 bricks.
(d) Paid unloading charges Rs. 90 (lump sum)
(e) Paid for Stocking in Stock yard Rs. 180 (lump sum)
(f) Breakage in handling - $\mathbf{1 \%}$ for first class bricks and $\mathbf{2 \%}$ for second-class bricks.
I.C.W.A. Inter

	First Class bricks (Rs.)	Second Class bricks (Rs.)
Purchase Price (a) 30 lakh bricks @ Rs. 30 per 1,000 bricks	90,000	
(b) 60 lakh bricks @ Rs. 25 per 1,000 bricks		1,50,000
Carriage charges @ Rs. 1.5 per 1,000 bricks	4,500	9,000
Unloading charges Rs. 90		
Stocking charges Rs. 180		
Rs. 270	90	180
Total Cost	94,590	1,59,180

		First Class bricks	Second Class bricks
Total bricksLess: Breakage (1\% and 2\%)	Goods bricks	30,00,000	60,00,000
		30,000	1,20,000
		29,70,000	58,80,000
Issue Rate for 1,000 bricks		31.85	27.07

Q. 50

A company has the option to procure a particular material from two sources:
Source 1 assures that defective will not be more than $\mathbf{2} \%$ of supply of quantity.
Source 2 does not give any assurance, but on the basis of past experience of suppliers received from it, it is observed that defective percentage is 2.8%.

The Materials is supplied in lots of $\mathbf{1 , 0 0 0}$ units. Source 2 supplies the lot of a price, which is lower by Rs. 100 as compared to source 1 . The defective units of materials can be rectified for use at a cost of Rs. 5 per unit.

You are required to find out which of the source is more economical.

C.A. Inter

Comparative statement of procuring Materials from two sources

	Materials source 1	Materials source 2
Defective in \%	2	2.8
	[figure estimate]	[past experience]
Unit supplied [in one lot]	1,000	1,000
Total defective units in a lot	20	28
Additional price paid per lot[Rs.] A	$[1,000$ unit $\times 2 \%$]	[1,000units $\times 2.8 \%$]
Rectification cost of defect [Rs.] B	100	-
	100	140
Total additional cost per lot [Rs.] A+B	[20 unit \times Rs. 5]	[28 units \times Rs. 5]

Decision: - On comparing the total additional cost incurred per lot of 1,000 units, we observe that is more economical, if the required materials units are procured from materials source 2.

